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Abstract

A technique is developed to predict the dynamic contact forces arising after passing road surface
irregularities by a vehicle modelled as an undamped multiple-degrees-of-freedom (MDOF) system. An
MDOF system moving along an uneven profile is decomposed into an aggregate of independent oscillators
in the modal space, such that the response of each oscillator can be calculated independently. An equation
relating the contact forces in the physical space to the modal forces is established. The technique developed
is applied to the calculation of the coefficients of the harmonic components of the contact forces arising
after the passage of a ‘‘cosine’’ pothole. The application of the technique to various problems, such as
evaluation of the effect of parameter modifications on the vehicle dynamics and reduction of vehicle models
in bridge-related problems, as well as its extension to the damped case, are also discussed. One interesting
phenomenon reported in the DIVINE project [1], regarding the replacement of a steel suspension by an air
suspension, resulting in an increase of the maximum response of short-span bridges, is explained by
applying the technique suggested. The discussion is amply illustrated by examples of the application of the
technique to the calculation of the tire forces due to a pothole for two simple—quarter-car and half-car—
vehicle models.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The paper is concerned with the assessment of dynamic tire forces that arise after the passage of
a road surface irregularity by a vehicle. This problem is of great importance as it is well known
that dynamic loads produced by vehicles considerably affect damage of the infrastructure
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(pavement or bridges), a significant portion of which in many countries is either aging or reaching
the end of its life. The recently concluded multinational DIVINE (Dynamic Interaction Between
Vehicles and Infrastructure Experiment) project [1] indicates that trucks ‘‘wear’’ pavements at a
rate which is dependent not only on the static load carried by the vehicle, but also on the dynamic
performance of the vehicle, on the longitudinal profile of the road and on the structural variability
of the pavement. The outcomes of this project suggest that current understanding of the dynamic
interactions between moving vehicles and the infrastructure carrying them is inadequate.

This study originated from our earlier works on the examination of vibration of bridges
traversed by heavy vehicles and was motivated by results of field and numerical experiments
reported in some publications (e.g., Refs. [1–3]) that showed large values (more than 100%) of the
dynamic increment (in some publications, dynamic load factor (DLF)), defined as [2]

DI ¼
ðddyn � dstaticÞ

dstatic

� 100%;

where ddyn and dstatic are peak dynamic and static deflections, respectively. Such large values of the
DI cannot be explained in the framework of simple—moving force or moving mass—vehicle
models. Indeed, the dependence of the maximum deflection of a simply supported beam on the
speed of the traveling force presented in Ref. [4] shows that the maximum DI (about 70%) occurs
at very high speed and, for the vehicle speeds of interest, it does not exceed 10–15%. The inertia
effect of the moving mass in this speed range is also small and can be neglected. Moreover, as can
be concluded from many publications, as well as from our numerical experiments, such large
values of the DI cannot be obtained in the framework of more complicated—multiple-degrees-
of-freedom models if the bridge surface is assumed to have a flat longitudinal profile (as noted in
Ref. [1], ‘‘for a smooth profile, the influence of the truck suspension is insignificant’’). The above
arguments lead us to speculate that the large values of the DI measured in some field experiments
can be explained only by the presence of road irregularities on the bridge and its approaches. Then it
follows that the examination of the effect of an uneven road profile is crucial in the analysis of
high-magnitude bridge vibration.

The effect of road surface irregularities on the bridge vibration has been examined by many
researchers (see, e.g., Refs. [1–3,5–8] and references therein), and many methods for numerically
solving the problem of a vehicle moving along a bridge with an uneven surface have been
developed (e.g., Refs. [6–11]). The main difficulty associated with this problem is in the large
number of parameters involved. As a result, the majority of studies reported in the literature are
confined to extensive numerical modelling or field experiments. An obvious disadvantage of these
approaches is that results of numerical or field experiments are often valid only for a particular
bridge and vehicle and cannot easily be generalized to other configurations. It is then not
surprising that results reported in the literature are sometimes contradictory. This point is well
illustrated by the following examples. In both Refs. [2] and [5], short-span bridges are considered.
However, Ref. [2] shows large values of the dynamic increment measured in field experiments (up
to 137%), whereas, Ref. [5] reports that ‘‘the analytical simulations and field tests showed that
DLF is considerably lower than code-specified values’’ (the latter are around 30% depending on
the code and bridge length) and recommends to reduce the design values of DLF. Another
example of this kind can be found in Ref. [3]. The authors explore how different factors influence
bridge behavior. Based on results of numerical experiments with elaborate finite-dimensional
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models of a bridge and vehicle, they conclude that, in terms of the maximum bridge deflection, the
‘‘initial vehicle suspension oscillation had the greatest effect’’ and the ‘‘bridge-surface roughness
was found to have negligible effect’’. On the other hand, they justly note that road surface
irregularities on the bridge approaches is the principal cause of the initial suspension oscillation,
which means, in fact, that it is road roughness (road surface irregularities) that had the greatest
effect on the maximum bridge deflection.

In view of complexity of the problem of coupled bridge–vehicle vibration associated with a
large number of parameters affecting the solution in a non-trivial way, it is advisable to start
examination from certain typical isolated (local) irregularities. Moreover, it is important, in our
opinion, to examine first the problem of finding the vehicle response due to the passage of an
irregularity located on the rigid foundation. To justify this point, we note that the local character
of an irregularity suggests shortness of the passage time and, in view of the considerable inertia of
the bridge, its dynamics cannot be noticeably changed during that time. In addition, analysis of
results of field and numerical experiments reported in the literature, as well as our numerical
experiments, show that dynamic contact forces arising when a vehicle passes typical road surface
irregularities are considerably greater than those caused by coupled bridge–vehicle vibration in
the case of an ideally smooth road surface. Hence, neglecting the bridge dynamics, we find
adequate approximations of the additional vehicle oscillations and dynamic forces that arise
during, or immediately after, the passage of a road surface irregularity. The effect of these
additional forces on the bridge dynamics depends on the frequencies and magnitudes of these
forces. Thus, in order to predict the effect of an irregularity on the bridge vibration, we basically
need to know whether the frequency spectrum of the vehicle oscillations due to the irregularity
contains frequencies that match the fundamental frequency of the bridge and whether the
magnitudes of the corresponding harmonic forces are sizeable.

The problem of calculation of the dynamic forces arising after passing an irregularity is very
important also in studies related to pavement damage [1,12–16]. Based on experimental results
reported in the literature, Potter et al. [12] conclude that the peak damage due to dynamic loads
can be between 1.5 and 12 times the level of damage caused by a static load and note that, at
highway speeds, ‘‘the parameter which causes the greatest variation in dynamic tyre forces, and
the largest changes in ranking of suspensions, is the road roughness level.’’ Moreover, as indicated
in Ref. [14], there is evidence that ‘‘fatigue failure of pavements is likely to be governed by peak
dynamic forces, and not by the average dynamic forces.’’ Then it follows that, both in bridge and
pavement damage-related applications, it is critically important to establish dependence of the
peak tire forces arising after passing an irregularity on the irregularity parameters, suspension
characteristics, and vehicle speed.

The general idea of the approach discussed in this paper is to decouple equations governing
vibration of an MDOF vehicle model moving along uneven road, to solve the uncoupled
equations in the modal space, and to transform back the results obtained into the physical space.
The fact that the model is decomposed into independent single-degree-of-freedom (SDOF)
oscillators makes it possible to find solution for each oscillator analytically (or semi-analytically).
The crucial step, when transforming back to the physical space, is to calculate not the contact
forces themselves but rather the Fourier coefficients of their harmonic components. This allows us
to represent the results obtained in a form suitable for subsequent analysis. Moreover, in many
cases (e.g., when applied to problems of bridge vibration), the Fourier coefficients of the harmonic
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components of the contact forces give us more valuable information than just magnitudes of the
total dynamic forces.

In this paper, we consider the case of undamped vehicle models, although the approach
discussed is applicable to damped vehicles as well (see Section 5.2). The format of the presentation
is as follows. In Section 2, we reduce the problem of vibration of an MDOF vehicle moving along
an uneven road to that of independent SDOF oscillators in the modal space. A technique for the
calculation of contact forces arising after the passage of an isolated ‘‘cosine’’ pothole is presented
in Section 3. In Section 4, an interesting phenomenon reported in Refs. [1,2] is discussed and
explained by applying the technique suggested. Section 5 discusses extensions of the approach
suggested to damped vehicle models, to local irregularities of different types, and to bridge-related
problems.

To conclude the introduction, let us cite the DIVINE report [1]: ‘‘There is now a need for a
higher level of scientific knowledge about the interaction between trucks and pavements, and
between trucks and bridges, in order to introduce regulations based on vehicle performance in
terms of road friendliness.’’ It is achieving this goal that the work presented is aimed at.

2. Decomposition of MDOF vehicle model moving along an uneven road

Consider an undamped MDOF vehicle model with n degrees of freedom and m contact points,
schematically shown in Fig. 1. Let zðtÞARn be a vector of its physical co-ordinates such that
zðtÞ ¼ 0 corresponds to the equilibrium state (the springs are loaded by the vehicle weight) and
zcontARm be a vector of vehicle co-ordinates (in the general case, linear combinations of the
co-ordinates) that take part in the interaction with the ground. Denote by li; i ¼ 1;y;m; the
distance between the first and ith contact points such that l1 ¼ 0 and liþ1 � li is the distance
between the ði þ 1Þth and ith contact points (distance between two adjacent axles). Let M be the
mass matrix and %K be stiffness matrix of the free-free (i.e., without the springs connected to
the ground) vehicle. Denote by Sv the m � n matrix (‘‘sensor’’ operator) that ‘‘chooses’’ contact
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co-ordinates, zcont ¼ Svz; and by Kint a symmetric m � m matrix describing the interaction of the
vehicle with the ground.

To exemplify the above notation, let us consider the ‘‘quarter-car’’ and ‘‘half-car’’ models
depicted in Fig. 2. For the ‘‘quarter-car’’ model (Fig. 2(a)), we have

n ¼ 2; m ¼ 1; l1 ¼ 0; Kint ¼ 2k2; Sv ¼ ½0; 1�:

For the ‘‘half-car’’ model (Fig. 2(b)), the parameters are

n ¼ 4; m ¼ 2; l1 ¼ 0; l2 ¼ l; Kint ¼
k2 0

0 k2

" #
; Sv ¼

0 0 1 0

0 0 0 1

" #
:

The vehicle mass and stiffness matrices are written in a standard way and not presented here. The
order of numbering the co-ordinates can be easily understood from the form of the matrices Sv:

The free vertical vibration of the vehicle resting on the rigid foundation is governed by the
equation

M .zðtÞ þ %KzðtÞ ¼ �ST
v KintSvzðtÞ: ð1Þ

By introducing the notation

K ¼ %K þ ST
v KintSv ð2Þ

for the stiffness matrix of the supported vehicle, Eq. (1) reduces to

M .zðtÞ þ KzðtÞ ¼ 0: ð3Þ

Let now the vehicle move with a speed v along a road with a longitudinal profile rðxÞ: In this case,
the vehicle is subject to external forces acting on it at the contact points due to variation in the
road profile rðxÞ: Introduce the notation Sr for the operator defined by the relation

SrrðxÞ ¼

rðx � l1Þ

rðx � l2Þ

^

rðx � lmÞ

8>>><
>>>:

9>>>=
>>>;
: ð4Þ
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Then, it can be checked directly that the equation governing vertical vibration of the moving
vehicle is given by

M .zðtÞ þ KzðtÞ ¼ ST
v KintSrrðvtÞ: ð5Þ

Solving Eq. (3), we find vehicle eigenfrequencies oi ð fi ¼ oi=2pÞ; i ¼ 1;y; n (note that they all
are non-zero since K is the stiffness matrix of the supported vehicle) and the matrix of vehicle
eigenvectors f: Representing z as zðtÞ ¼ fZðtÞ; where Z is a vector of modal co-ordinates, and
multiplying both sides of Eq. (5) by fT from the left, we get the uncoupled equations in the modal
co-ordinates,

*M.Zþ *KZ ¼ fTST
v KintSrrðvtÞ; ð6Þ

where *M ¼ fTMf 	 diag½ *mi� and *K ¼ fTKf 	 diag½ *ki� are diagonal matrices.
Introducing the notation

A ¼ *K�1fTST
v Kint ð7Þ

and

*rðxÞ ¼ ASrrðxÞ; ð8Þ

where A is a dimensionless n � m matrix, we rewrite Eq. (6) in the form

*M.Zþ *KZ ¼ *K*rðvtÞ; ð9Þ

or, in a scalar form,

*mi .Zi ¼ � *kiðZi � *riðvtÞÞ; i ¼ 1;y; n; ð10Þ

where *ri is the ith component of the vector *r:

Remark 1. Note that the case where the vehicle traverses a beam with an uneven profile rðxÞ is
treated in exactly the same way. In this case, the function rðxÞ in all equations is to be replaced by
wðx; tÞ þ rðxÞ; where wðx; tÞ is the displacement of the beam point x at time t:

As can be easily seen, the ith equation in Eq. (10) governs vibration of the SDOF oscillator with
the modal mass *mi and the spring coefficient *ki moving along the profile *riðxÞ: The matrix A

transforms the input profile for the original MDOF vehicle model into the profiles *riðxÞ for the
independent oscillators and is further referred to as the model scaling matrix. Thus, we reduced the
problem of an MDOF system moving along a profile rðxÞ to n independent problems for SDOF
oscillators, with the profiles *riðxÞ being different for each oscillator. Solving n independent
equations (10), we find the vector of modal co-ordinates Z:

To derive a relationship between the vector of the dynamic contact (tire) forces

FcðtÞ ¼ Kint½SvzðtÞ � SrrðvtÞ� ð11Þ

and the modal force vector *FðtÞ ¼ *KðZðtÞ � *rðvtÞÞ; we take advantage of the following result.

ARTICLE IN PRESS

A.V. Pesterev et al. / Journal of Sound and Vibration 275 (2004) 127–149132



Lemma 1. For any linear vehicle model, the following matrix identity holds:

AT *KA 	 Kint: ð12Þ

The lemma can be proved by considering conditions of static equilibrium for an MDOF vehicle
resting on a road with an uneven profile. The proof is straightforward and is omitted here.

Substituting zðtÞ ¼ fZðtÞ into Eq. (11), rewriting it as FcðtÞ ¼ AT *KZðtÞ � KintSrrðvtÞ; and
substituting *FðtÞ þ *K*rðvtÞ for *KZðtÞ into the last equation, we get

FcðtÞ ¼ AT *FðtÞ þ AT *KASrrðvtÞ � KintSrrðvtÞ:

By virtue of identity (12), it reduces to the simple equation

FcðtÞ ¼ AT *FðtÞ: ð13Þ

The implementation of the above-described decomposition technique for calculating forces
acting on the road from an MDOF vehicle is very simple and is summarized as follows.

(1) Solve the eigenvalue problem ðK � o2MÞf ¼ 0 to decouple the MDOF problem.
(2) Calculate the model scaling matrix A by formula (7).
(3) Transform the input SrrðxÞ of the original problem into that for the uncoupled problem by

means of the matrix A: *rðxÞ ¼ ASrrðxÞ:
(4) Solve the uncoupled system of equations (9) to get the forces *F:
(5) Transform these forces to the contact ones by means of the matrix AT: Fc ¼ AT *F:

The decomposition of the MDOF model into an aggregate of independent oscillators reduces
the amount of computation. This technique can successfully be applied to solving various
problems. One of them is briefly discussed in Section 5.3. In this paper, we will consider the
application of the above technique to the calculation of contact forces arising after the passage
of a local road surface irregularity by an MDOF vehicle. We will extend the results obtained in
Ref. [17] for an SDOF moving oscillator to the case of a linear undamped MDOF vehicle model.

3. Effect of a pothole on the dynamics of an MDOF vehicle

3.1. Problem statement

We will consider an isolated irregularity, further referred to as a pothole, of the form

rðxÞ ¼

� 1
2

a½1 � cos 2px
b
�; 0pxpb;

0; xo0; x > b;

8><
>: ð14Þ

where a and b > 0 are the pothole ‘‘depth’’ and ‘‘width,’’ respectively. A negative value of a
corresponds to a bump. As discussed in Ref. [6], this function ‘‘is capable of expressing diverse
types of irregularities.’’ We set the problem of finding magnitudes of the harmonic components of
the contact forces arising after the passage of the pothole (14) as functions of the vehicle speed and
the pothole size.
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To solve the problem, we will apply the technique discussed in the previous section. Denote by
Ai the ith row of the scaling matrix A and by aij its entries. Consider the ith equation (10). The
longitudinal profile for the ith oscillator can be written as

*riðxÞ ¼ AiSrrðxÞ 	 ai1rðx � l1Þ þ?þ aimrðx � lmÞ: ð15Þ

As can be seen, the modal representation of the system implies that each oscillator passes m

‘‘potholes’’ (which, generally, may overlap). All these potholes have the same width b but different
depths: the depth of the jth pothole passed by the ith oscillator is equal to *aij ¼ aija:

After the passage of a pothole, the modal forces *Fj are harmonic ones. Denote by j *Fj j their
amplitudes. Expanding the vector of contact forces into the Fourier series,

Fc ¼
Xn

j¼1

Cj cos ðojt þ jjÞ ð16Þ

and applying Eq. (13), we get the Fourier coefficients as

Cj ¼ AT
j j *Fj j: ð17Þ

Thus, the problem of determining the dynamic effect of a pothole on an MDOF vehicle reduces
to that of finding the amplitude of the force acting on an SDOF oscillator after passing m
potholes.

It will be shown later in this section that m potholes of the same length can be replaced by one
‘‘equivalent’’ pothole. Thus, the key point in finding the dynamic effect of a pothole on an MDOF
vehicle is to be able to efficiently calculate the magnitude of the contact force arising after passing
one pothole by an SDOF oscillator.

3.2. Earlier results for an SDOF oscillator

The effect of a pothole/bump on the dynamics of vibration of an SDOF undamped vehicle
model has been examined in Ref. [17]. It was shown that the magnitude of the harmonic contact
force acting on the road after passing a pothole is given by

Fc ¼ k0aFðgÞ; ð18Þ

where g is the dimensionless parameter

g ¼
bo0

2pv
	

bf0

v
; ð19Þ

o0 ð f0 ¼ o0=2pÞ and k0 are the oscillator eigenfrequency and spring coefficient, respectively. The
function

FðgÞ ¼
jsin pgj
jg2 � 1j

ð20Þ

called the dynamic amplification factor for a pothole (see Ref. [17] for detail), is shown in Fig. 3. By
means of the dynamic amplification factor, one can immediately estimate the magnitude of the
contact force acting on the road from the oscillator after passing the pothole. As can be seen, it
linearly depends on the spring stiffness and the pothole depth, and the remaining three parameters
(v; b; and o0 or f0) are combined through the function of one variable FðgÞ:
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3.3. An MDOF vehicle with one contact point passing a pothole

We begin the examination of an MDOF vehicle model with the simplest case where a vehicle
has one contact point, m ¼ 1: In this case, the contact force Fc is a scalar, and A is a vector of
length n: A ¼ ½a11;y; an1�T: The jth independent oscillator passes one pothole of width b and
depth *aj ¼ aj1a; and we can immediately apply the results of Ref. [17] to find amplitudes of the
forces *Fj by Eq. (18),

j *Fj j ¼ *aj
*kjFðgjÞ; ð21Þ

where FðgÞ is given by Eq. (20) and

gj ¼ fjb=v: ð22Þ

The Fourier coefficients Cj given by Eq. (17) are calculated analytically as

Cj ¼ aj1 *aj
*kjFðgjÞ: ð23Þ

Thus, given the parameters of the uncoupled system, the function FðgÞ; shown in Fig. 3, bears all
required information about the behavior of the MDOF system after passing a pothole.

Note that in the case of an MDOF vehicle, it is more convenient to plot all functions Cj in one
figure in order to get a better idea of the contribution of each oscillator to the dynamics of vehicle
vibration. These curves can be plotted versus the parameter b=v for a fixed value of the pothole
depth a (the dependence on which is trivial).

As an illustration, consider the ‘‘quarter-car’’ model (Fig. 2(a)) with the following parameters:
m1 ¼ 3:6� 104 kg; m2 ¼ 2:0 � 103 kg [7,18], k1 ¼ 4 � 106; k2 ¼ 1:2 � 107 N=m; and c1 ¼ c2 ¼ 0:
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Applying the technique described in the previous section, we obtain masses and frequencies of
the modal oscillators: *m1 ¼ 3:404� 104 kg; *m2 ¼ 0:403 � 104 kg; f1 ¼ 2:05 Hz; f2 ¼ 14:3 Hz; and
the entries of the scaling matrix A: a11 ¼ 1:05 and a21 ¼ 0:74:

Fig. 4 shows dependence of the Fourier coefficients C1 (dashed line) and C2 (solid line) of the
dynamic contact force acting on the road (vehicle) on the parameter b=v for a ¼ 1 cm: As can be
seen, for short-wavelength potholes, the high-frequency component ð14:3 HzÞ associated with the
axle-hop vibration is much greater than that due to body-bounce vibration ð2:05 HzÞ; which, in
turn, dominates for middle- to long-wavelength potholes (it takes its maximum value when
b=v E 0:4). For example, for v ¼ 20 m=s; the largest value of the tire force (about 3 � 105 N) is
expected when the pothole width is around 1:2 m ðb=v E 0:06Þ; the peak value of the force
associated with the body bounce is about three times less and occurs for bE8 m at the same speed.

3.4. General case of an MDOF vehicle

3.4.1. Arbitrary number of contact forces
Let the number of contact points be arbitrary, ma1: In this case, Fc is an m vector of contact

forces. Since each contact force generally has its own Fourier expansion, the total number of the
Fourier coefficients is equal to m � n: The basic difference of this case from the case of one contact
point is that each independent oscillator in the modal space passes m; rather than one, potholes.
As follows from Eq. (15), all potholes have the same width but different depths.

Let us show that several potholes of identical widths can be replaced by one ‘‘equivalent’’
pothole, which reduces the problem to that considered in the previous section. We consider an
oscillator moving along the horizontal rigid surface with m potholes (bumps) as shown in Fig. 5
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and pose the problem of finding the amplitude of the oscillator free vibration after passing all
potholes.

The potholes are assumed to be of form (14), have the same width b but different depths aj; and
the jth pothole is located at the distance lj from the first one. If ljþ1 � ljob; the ð j þ 1Þth and jth
potholes overlap.

Theorem 1. The response of a linear undamped oscillator due to m potholes of width b and depths as;
s ¼ 1;y;m; is equal to that due to one pothole of width b and depth j *aj; where *a is the complex
number

*a ¼
Xm

s¼1

as e
�io0ls=v: ð24Þ

Proof. The equation governing vibration of the oscillator can be written in the form

.zðtÞ þ o2
0zðtÞ ¼ o2

0

Xm

s¼1

rsðvtÞ: ð25Þ

By the superposition principle, the solution to Eq. (25) can be represented as zðtÞ ¼
Pm

s¼1zsðtÞ;
where zsðtÞ is a solution of the equation

.zsðtÞ þ o2
0zsðtÞ ¼ o2

0rsðvtÞ; s ¼ 1;y;m: ð26Þ

Denote by Ts the moment when the oscillator leaves the sth pothole, Ts ¼ T þ ls=v; where T ¼
b=v: For tXTs; rsðvtÞ ¼ 0; and the solution to Eq. (26) represents the free vibration of the
oscillator

zsðtÞ ¼ Zs cos ðo0ðt � TsÞ þ j0Þ 	 ZsRe½eiðo0ðt�TsÞþj0Þ�: ð27Þ

It has been proven in Ref. [17] that

Zs ¼ asFðgÞ; ð28Þ
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where g and FðgÞ are defined by Eqs. (19) and (20), respectively. The phase angle j0 is determined
by the oscillator parameters and the pothole width but does not depend on as; hence, j0 is the
same for all zsðtÞ: When tXTm; representation (27) is valid for all s and we have

zðtÞ ¼
Xm

s¼1

ZsRe½eiðo0ðt�TÞþj0�o0ls=vÞ� ¼ Re FðgÞeiðo0ðt�TÞþj0Þ
Xm

s¼1

as e
�io0ls=v

" #
: ð29Þ

Then, it follows that the magnitude of the oscillator free vibration after passing m potholes is

Z ¼
Xm

s¼1

as e
�io0ls=v

�����
�����FðgÞ: ð30Þ

Comparing this with Eq. (28), we get Eq. (24).
Eq. (24) suggests the following way of calculation of the depth of the equivalent pothole. Each

of the m potholes is assigned a complex depth by multiplying the real value as by expð�io0ls=vÞ;
which accounts for the time lag between the passage of the pothole by the sth and first contact
points. The depth of the equivalent pothole is then the magnitude of the sum of the complex
depths obtained.

By means of Theorem 1, the calculation of the Fourier coefficients reduces to the case
considered in Section 3.3. Indeed, given one pothole of depth a in the physical space, the jth
oscillator in the modal space passes m potholes of depths aj1a;y; ajma; where aji are entries of the
scaling matrix A (see Eq. (15)), which, by Theorem 1, is equivalent to passing one pothole of depth
j *aj j calculated by Eq. (24)

*aj ¼ a
Xm

s¼1

ajs e
�ioj ls=v: ð31Þ

Then, the modal forces j *Fj j are calculated by Eq. (21) with the substitution of j *aj j for *aj and the
vector Cj of the Fourier coefficients, by Eq. (17).

Remark 2. The scalar equation (23) obtained for the case of one contact point can be used to
calculate components of the vector Cj: The pth component of Cj (the jth Fourier coefficient of the
pth contact force) is obtained by substitution of ajp for aj1 into (23).

3.4.2. Multiple eigenfrequencies

Finally, we need to consider the case of multiple vehicle eigenfrequencies, which seems to be
rather typical for real vehicles. Let oj1 ¼ oj2 ¼ oj: We have two harmonics with the same
frequency in expansion (16), which are to be considered as one harmonic. Thus, we need to find
the Fourier coefficient of the harmonic corresponding to the repeated eigenfrequency oj: Since the
j1th and j2th eigenvectors are different, the j1th and j2th rows of the matrix A are also different,
and, hence, the depths of m potholes passed by two oscillators are generally different. This implies
that complex depths of the equivalent potholes for the j1th and j2th modal oscillators are different
as well, and the oscillator vibrations are generally not in phase such that we cannot simply add
two corresponding Fourier coefficients in Eq. (16).
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Consider free vibration of the j1th and j2th oscillators in the modal space after passing all m

potholes. By Eq. (29), we have

Zjk
ðtÞ ¼ Re½ *ajke

iðojðt�TÞþjjÞ�FðgjÞ; k ¼ 1; 2;

where *ajk is complex depth of the ‘‘equivalent’’ pothole for the jkth modal oscillator given by
Eq. (31). The modal forces acting on the road are given by *Fj1 ¼ *kj1Zj1

and *Fj2 ¼ *kj2Zj2
:

Transforming them into the physical space by means of Eq. (13) and adding them together, we
find the harmonic component of the contact force FcðtÞ corresponding to the frequency oj;

AT
j1
*Fj1ðtÞ þ AT

j2
*Fj2ðtÞ ¼ Re½ðAT

j1
*kj1 *aj1 þ AT

j2
*kj2 *aj2Þ e

iðojðt�TÞþjjÞ�FðgjÞ:

Noting that the right-hand side of the last equation represents the harmonic function with the
amplitude jAT

j1
*kj1 *aj1 þ AT

j2
*kj2 *aj2 jFðgjÞ and extending this to the case of arbitrary multiplicity of a

repeated eigenfrequency, we arrive at the following theorem.

Theorem 2. If a vehicle eigenfrequency oj has multiplicity p such that oj1 ¼ oj2 ¼ ? ¼ ojp 	 oj;
the Fourier coefficient of the corresponding harmonic component in the expansion of the contact

force is

Cj ¼ jAT
j1
*kj1 *aj1 þ?þ AT

jp
*kjp *ajp jFðgjÞ: ð32Þ

The last result implies that the case of repeated eigenfrequencies presents, in fact, almost no
additional difficulties. Indeed, in the general case, we simply need to perform all calculations in the
complex plane: to find complex depths *aj (rather than only their magnitudes j *aj j) for all oscillators in
the modal space and to calculate complex Fourier coefficients as AT

j
*kj *ajFðgjÞ for all n harmonics

(without regard to whether they are single or multiple). Then, if some eigenfrequencies are identical
(or close to each other), we add the corresponding complex Fourier coefficients. And only after this,
we take absolute values of the Fourier coefficients obtained to get real coefficients of expansion (16).

3.4.3. Algorithm for the general case
Summing up the discussions in this section, we arrive at the following algorithm for calculation of

the Fourier coefficients of the expansion of the contact forces arising after passing a pothole (14).

(1) Decompose the vehicle model into an aggregate of independent SDOF oscillators in the
modal space to get vehicle eigenfrequencies and eigenfunctions and the real-valued n � m
scaling matrix A:

(2) Calculate complex depths of the equivalent potholes for all modal oscillators by Eq. (31).
(3) Calculate the complex magnitudes of the modal forces by Eq. (21).
(4) Get n complex m-vectors of the Fourier coefficients by Eq. (17).
(5) Check if there are multiple eigenfrequencies. If such eigenfrequencies exist, reduce the number

of the coefficients by adding together those that correspond to one repeated eigenfrequency.
(6) Take absolute values of the complex Fourier coefficients obtained.

As a result of this procedure, we get nd real vector functions CjARm of the Fourier coefficients,
where nd is the number of different eigenfrequencies. The rth component of the jth vector is the
function showing the dependence of the magnitude of the jth harmonic component of the rth
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contact force on the vehicle speed and pothole width. As in the case of one contact force, it is more
illustrative to depict all Fourier coefficients corresponding to one contact force in one figure as
functions of b=v for a fixed value of the pothole depth a:

The basic difference of the general case from the case of one contact point is that the Fourier
coefficients in the former case depend on two parameters rather than on one parameter as it was in
the latter case. Indeed, FðgjÞ is a function of the ratio b=v; and the depth of the equivalent pothole
given by Eq. (31) is a function of vehicle speed v: The shape of each curve Cjr plotted versus b=v
and the abscissa of its peak depend only on the eigenfrequency of the corresponding oscillator and
are determined by the function FðgjÞ: However, the height of the curve is determined by the *aj;
which now depends on the speed. Thus, if we want to examine the dependence of the Fourier
coefficients on both vehicle speed and pothole width, we have to consider a family of plots
parametrized by the values of the vehicle speed. Note that one can choose a different pair of
independent parameters, e.g., b and v; however, the pair b=v and v seems to be more convenient.

3.5. Example

To illustrate the technique described in the previous section, we applied it to calculation of the
Fourier coefficients of the contact forces arising after passing a pothole of form (14) by the 4-DOF
vehicle model with two contact points shown in Fig. 2(b). The values of the masses m1 and m2 and
the spring coefficients are the same as those considered in Section 3.3, the second order mass
moment of inertia I1 ¼ 1:44� 105 kg m2 [7], and the distance between axles l ¼ 3 m: As in the
previous case, the damping was set zero.

Applying the decomposition technique described in Section 2, we find the eigenfrequencies
f1 ¼ 1:54; f2 ¼ 2:05; f3 ¼ f4 ¼ 14:3 Hz: The first and second eigenfrequencies correspond to the
pitch and body-bounce vibrations, respectively. The repeated eigenfrequency 14:3 Hz corresponds
to two axle-hop vibrations. The scaling matrix A is

A ¼

0:3827 �0:3827

0:5427 0:5427

�0:5262 0:5262

�0:5229 �0:5229

2
6664

3
7775:

Figs. 6 and 7 show the amplitudes of the pitch (dashed line), body-bounce (bold solid line), and
axle-hop (thin solid line) components of the first contact force after passing a pothole of depth
a ¼ 1 cm versus b=v for two values of the vehicle speed: 10 and 30 m=s; respectively. In view of the
model symmetry, the results related to the second contact force are the same and not presented.
As can be seen, the Fourier coefficient corresponding to the repeated axle-hop eigenfrequency is
not affected by the vehicle speed and depends only on the parameter b=v; whereas the pitch and
axle hop do depend on both parameters.

In certain circumstances, e.g., when a road surface is known to have irregularities of a fixed
wavelength, it may be advisable to plot the Fourier coefficients as functions of vehicle speed for
that value of b in order to be able to determine ‘‘dangerous’’ values of speed, for which the contact
forces are especially large. Figs. 8 and 9 show the Fourier coefficients of the first contact force
after the passage of the short- and long-wavelength potholes, respectively. As can be seen, the low-

ARTICLE IN PRESS

A.V. Pesterev et al. / Journal of Sound and Vibration 275 (2004) 127–149140



frequency body-bounce and pitch forces arising after the passage of the short pothole are
negligibly small compared to the high-frequency axle-hop force in the whole interval of speed
values of interest. On the contrary, in the case of the long pothole, the body-bounce and pitch
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Fig. 6. Amplitudes of the pitch (dashed line), body-bounce (bold line), and axle-hop (thin solid line) components of the

first contact force after passing the pothole of depth a ¼ 1 cm for the 4-DOF model moving at v ¼ 10 m=s:

Fig. 7. Amplitudes of the pitch (dashed line), body-bounce (bold line), and axle-hop (thin solid line) components of the

first contact force after passing the pothole of depth a ¼ 1 cm for the 4-DOF model moving at v ¼ 30 m=s:
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forces are considerably greater than the axle-hop force. Fig. 9 also demonstrates that, although
the peak values of the body-bounce and pitch forces are almost the same for the given pothole, the
contributions of these forces in the total contact force in different intervals of speed are
considerably different.

3.6. Another form of representation of the results

There is another way to represent the results, which seems to be more appropriate when we
want to examine a wide range of vehicle speeds and to avoid drawing many figures. Indeed, the jth
Fourier coefficient can be written in the form

Cjðb; vÞ ¼ AT
j
*kj *ajFðgjÞ 	 ajðvÞFjðb=vÞ: ð33Þ

(Here, Cjðb; vÞ and ajðvÞ are m vectors; however, in the following discussion, we consider Eq. (33)
as a scalar equation associated with a certain contact point, in which, for simplicity of notation,
the subscript denoting a particular contact point is dropped.) Thus, each Fourier coefficient is
obtained from the unique function FðgÞ by scaling the variable b=v; Fjðb=vÞ 	 FðgjÞ; where gj ¼
fjb=v; and by multiplying it by the corresponding speed-dependent coefficient ajðvÞ ¼ AT

j
*kj *aj:

Then, instead of drawing figures of the Fourier coefficients for different speeds (or different
potholes), we can confine ourselves to two figures: one figure with the plots of the functions
Fjðb=vÞ; j ¼ 1;y; nd and the other with the plots of the multipliers ajðvÞ: Under such a
representation, the first figure shows the shape and relative locations of the curves representing the
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Fig. 8. Dependence of amplitudes of the pitch (dashed line), body-bounce (bold line), and axle-hop (thin solid line)

components of the first contact force on vehicle speed for the 4-DOF model after the passage of the ‘‘short’’ pothole of

width b ¼ 1 m and depth a ¼ 1 cm:
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Fourier coefficients. In particular, it shows the regions of the parameter b=v where the harmonic
forces take their maximum values or, vice versa, can be neglected. The second figure shows
dependence of the multipliers aj on the vehicle speed. The use of both figure allows us to
accurately evaluate the Fourier coefficients for any values of the pothole width b and vehicle
speed v:

To illustrate the above-said, this way of representation of the results is applied to the ‘‘half-car’’
model considered in Section 3.5. Fig. 10 depicts three dimensionless functions Fjðb=vÞ; which show
how the axle-hop, body-bounce, and pitch forces depend on b=v and where they take their
maximum values. The dependence of the magnitudes of these forces on the vehicle speed is shown
in Fig. 11. As can be seen, the axle hop does not depend on the speed (to be more precise, it
depends only on b=v); the dependence of the body-bounce and pitch forces on the speed, known as
the ‘‘wheelbase filtering’’ phenomenon (see, e.g., Refs. [12,15,16]), is considerable and cannot be
neglected.

4. On one phenomenon reported in the DIVINE report

The DIVINE report [1] defines air suspension as more road-friendly than steel suspension and
recommends using it instead of the latter, but notes that ‘‘For short-span bridges ð10 mÞ with poor
profiles, large dynamic responses occur for both air- and steel-suspended vehicles.’’ By taking into
account that the basic difference between two suspensions is in the body-bounce natural
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Fig. 9. Dependence of amplitudes of the pitch (dashed line), body-bounce (bold line), and axle-hop (thin solid line)

components of the first contact force on vehicle speed for the 4-DOF model after the passage of the ‘‘long’’ pothole of

width b ¼ 10 m and depth a ¼ 1 cm:

A.V. Pesterev et al. / Journal of Sound and Vibration 275 (2004) 127–149 143



frequencies whereas the vibration of short-span bridges are affected by axle hop (fundamental
frequencies of such bridges are in the range of axle-hop frequencies), this observation sounds quite
natural.
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Fig. 11. Magnitudes of the harmonic forces a1ðvÞ (dashed line), a2ðvÞ (bold line), and a3ðvÞ (thin solid line) for the

4-DOF model.

Fig. 10. Functions F1ðb=vÞ (dashed line), F2ðb=vÞ (bold line), and F3ðb=vÞ (thin solid line) for the 4-DOF model.
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It is further noted, however, that [1, p. 11] ‘‘The highest measured responses were for short-span
bridgesy traversed by air-suspended vehicles where axle hop was excited by short-wavelength
roughness.’’ This observation seems to rely on results of field experiments reported in the work [2],
which also states: ‘‘Generally the peak bridge deflections were smaller when the air suspensions
were fitted except when axle hop was induced by roughness.’’ At first glance, the phenomenon
observed in Ref. [2] sounds strange and raises the question: how could softening of the suspension
(reduction of the body-bounce frequency) increase the bridge response affected by axle hop? The
conclusion of the paper [2] that ‘‘vehicles fitted with air suspension can couple with short-span
bridges’’ does not answer the question and explains nothing.

As noted in Ref. [1, p. 53], in the case of short-span bridges, the dynamics of the bridge vehicle
system is completely different from that in the case of medium- to long-span bridges, and ‘‘true
interaction no longer occurs.’’ Under these conditions, the model of a bridge ‘‘being forced to
vibrate by external forces—i.e., dynamic wheel loads—without taking the vehicle masses into
account’’ should be adopted. Then, in view of matching of the fundamental frequency of the
bridge and the axle-hop frequency, the increase in the bridge vibration can be explained by an
increase in the axle-hop force. We applied the technique developed in this paper to check whether
the replacement of a steel suspension by an air suspension results in an increase in the axle-hop
force.

In terms of the 2-DOF model shown in Fig. 2(a) replacement of a steel suspension by an air
suspension is modelled by softening the spring k1 supporting the vehicle body. The other spring k2

is not changed since we assume that the tires remain the same. Considering the 2-DOF model with
the body-bounce frequency 2:05 Hz used in the experiment described in Section 3.3 (Fig. 4) as
‘‘steel-suspended,’’ we reduced the spring coefficient k1 by two times, k1 ¼ 2 � 106 N=m; which, in
turn, reduced the body-bounce and axle-hop frequencies to 1.55 and 13:3 Hz; respectively. The
modified model was assumed to represent the ‘‘air-suspended’’ vehicle. The masses of the modal
oscillators for the ‘‘air-suspended’’ model are *m1 ¼ 3:53� 104 kg and *m2 ¼ 0:401 � 104 kg; and
the entries of the scaling matrix A are a11 ¼ 1:02 and a21 ¼ 0:85: The amplitudes of the body-
bounce and axle-hop forces for the ‘‘air-suspended’’ model are depicted in Fig. 12 by the dashed
and solid lines, respectively. As could be predicted, the reduction of the suspension frequency
considerably reduced the force associated with the body bounce. However, at the same time, this
increased the magnitude of the high-frequency force associated with the axle-hop by about 15%
(in spite of the fact that the axle-hop frequency diminished!). Since the axle-hop and bridge
eigenfrequencies are assumed to match well, the increase of the axle-hop force immediately results
in the increase of the bridge response.

Note that the result obtained is not specific to the example considered but is rather general.
Softening of vehicle suspension decreases magnitude of the low-frequency force associated with
the body bounce but increases the amplitude of the high-frequency axle-hop force. From the
physical standpoint this phenomenon can be explained as follows. By softening the suspension
spring coefficient, we permit the axle (which vibrates between the road and vehicle body) to
vibrate with greater amplitude. Since the force transmitted to the road is determined by the
amplitude of the axle vibration and by the spring coefficient k2; which has not been changed (the
tires are the same), its magnitude increases. This implies that an air-suspended vehicle is
potentially dangerous for short-span bridges with fundamental frequencies in the range of vehicle
axle-hop frequencies. Moreover, although air-suspended vehicles are considered ‘‘road-friendly’’,
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they can produce a greater pavement damage compared to steel-suspended vehicles in the case of
uneven road surface with short-wavelength irregularities, which excite the axle-hope vibration.

We believe that the above explanation of the phenomenon discussed is more realistic (and
simpler) than that given in the DIVINE report [1, p. 77]: ‘‘A probable explanation for this is the
fact that the very limited dynamic load sharing in air suspension allows the axles in a group to
vibrate in phase at axle-hop frequencies. ‘Cross-talk’ between conventional steel leaf suspension
limits this possibility.’’

5. Discussion of possible extensions and applications of the technique

5.1. Other local irregularities

The results discussed in Section 3 are not specific to the pothole described by function (14). We
used this particular pothole simply because its dynamic amplification factor, the function FðgÞ; is
available in the analytical form [17]. As can be seen, the technique is easily adopted to any other
local irregularity if its dynamic amplification factor, which shows the dependence of an SDOF
oscillator response on the oscillator and irregularity parameters, can be calculated. The only thing
that is required to be done when considering a pothole of a different form is to replace one
function FðgÞ by another. In particular, one can take advantage of the dynamic amplification
factor

FsðgÞ ¼
4g

j1 � 4g2j
jcos pgj
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Fig. 12. Amplitudes of the ‘‘body-bounce’’ (dashed line) and ‘‘axle-hop’’ (solid line) forces for the ‘‘air-suspended’’

model.
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given in Ref. [17] to obtain the Fourier coefficients of the contact forces due to passage of a ‘‘half-
sine’’ pothole

rðxÞ ¼
�a sin px

b
; 0pxpb;

0; xo0; x > b

(

(which differs from the ‘‘cosine’’ pothole (14) in that the derivative of rðxÞ at x ¼ 0 and x ¼ b have
jumps) by an MDOF vehicle.

If an irregularity can be represented as a linear combination of potholes (14), its dynamic
amplification factor can be obtained as a combination of functions FðgÞ for individual potholes by
applying the superposition principle. If all potholes representing the given irregularity have the
same width, one can apply the technique used in Section 3.4 and to replace the irregularity by a
pothole (14) of variable depth depending on the vehicle speed.

5.2. Damped vehicle models

The key point in the approach suggested is the decomposition of the moving MDOF system
into an aggregate of independent moving oscillators. In the undamped case, the governing
equations can always be uncoupled by transforming to modal coordinates. In the damped case,
this transformation does not uncouple the equations, except for a special case of proportional
damping, and we have the two following possibilities.

5.2.1. Approximate decomposition in the modal space
By transforming to the modal co-ordinates using the eigenvectors of the corresponding

undamped vehicle model and neglecting the off-diagonal entries of the modal damping matrix, we
get an approximate decomposition of the system into an aggregate of independent damped
oscillators in the modal space. As in the undamped case, each modal oscillator moves along its
own profile, which is determined by means of the same model scaling matrix A; and we have the
same Eq. (13) relating physical and modal contact forces. Numerical experiments show that the
error of the approximation is not high from the practical standpoint (the system dynamics is
determined, in the first turn, by the diagonal elements of the modal damping matrix). The quality
of the approximation depends not on the ‘‘level of damping’’ in the system but rather on the
‘‘degree of damping nonproportionality’’ (this notion can be defined in strict terms), such that
even a highly damped system can perfectly be approximated in this way.

5.2.2. Exact decomposition in the state space
By introducing the state variables zðtÞ and ’zðtÞ; the system of n second order differential

equations governing vehicle vibration is reduced to a set of 2n real state space equations. This
system can always be diagonalized, resulting in an uncoupled system of n complex first order
differential equations (or 2n real equations), which can be solved independently. If a pothole is
described by an analytical function, the first order complex differential equation can always be
solved analytically resulting in a complex-valued analog of function FðgÞ (note that the use of
complex arithmetic considerably simplifies all analytical calculations, such that the function FðgÞ
can be obtained with much less effort than in the case of a real second order equation).
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Both approaches have already been implemented and, at the moment, are under numerical
verification. The advantage of the first approach is in its physical clearness. Still, the second
approach seems to be more promising since it is exact (no approximations are involved) and
because of the convenience of analytical calculations using complex arithmetics.

Note also that, in the damped case, the contact forces are expanded in a series of functions
e�xj t cos ðojt þ jjÞ; where xj is the damping coefficient of the jth modal oscillator. Thus, the
Fourier coefficients to be calculated are magnitudes of the exponentially decaying harmonic
functions.

5.3. Reduction of vehicle models

In the problems related to bridge vibration, the use of an SDOF vehicle model is often justified
in view of the fact that only vehicle vibrations at a frequency close to the bridge fundamental
frequency considerably affect the vibration of the bridge. The use of an SDOF vehicle model
simplifies the analysis and, thus, is more convenient for the designer. Then, one faces the following
problem. Given an MDOF vehicle model and a bridge, what oscillator is to be chosen to
adequately represent the vehicle model? The technique developed in Section 2 perfectly suits this
goal. In certain circumstances, especially when stress calculations are required, it may be advisable
to use a reduced system with more than one degrees of freedom, i.e., to retain some modal
oscillators with eigenfrequencies not matching the fundamental frequency of the bridge that
produce sizable contact forces for a given road surface profile. The additional information
provided by the plots of the Fourier coefficients of the contact forces due to road surface
irregularities can be used to create an elaborate reduced vehicle model. A technique for the
reduction of an MDOF vehicle model based on the method suggested in this paper is discussed in
Ref. [19].

6. Conclusions

(1) The technique for decomposition of an undamped MDOF vehicle model moving along an
uneven road has been developed. It reduces the problem of vehicle vibration to finding
responses of independent SDOF oscillators, with each oscillator moving along its own profile.

(2) The decomposition technique has been applied to finding the Fourier coefficients of contact
forces acting on the road/vehicle after passing an isolated road surface irregularity. For
certain typical potholes (bumps), the Fourier coefficients are calculated by analytical formulas
and explicitly show dependence of contact forces on the vehicle speed and pothole
dimensions. Letting any model parameters (lumped masses or spring coefficients) vary, one
can immediately get the new set of the Fourier coefficients corresponding to the modified
model and, thus, one can easily observe the effect of the parameter variation on the vehicle
dynamics.

(3) The technique discussed has been applied to explain one interesting phenomenon reported in
the multinational DIVINE project [1].

(4) The extension of the technique to the case of a damped vehicle and its applications to other
problems have been discussed.
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